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An Analysis of Physical Optics Models
for Rough Surface Scattering

1. INTRODUCTION

There are a large number of approaches to the calculation of the electromag-

netic scattering from rough surfaces. 1-6 The importance of these techniques-

rests in their relevance to the determination of the effects of the real environment .-

on radar and communications systems. The analyses contain certain assumptions

about the nature of the rough surface in relation to the electromagnetic phenomena.

(Received for Publication 18 September 1984)
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4. Brown, G. S. (1982) A stochastic Fourier transform approach to scattering
from perfectly conducting randomly rough surfaces, IEEE Trans. Antennas
Propag. ,P-30 (No. 0•:1135-1144.

5. Peake, W. H. (1959) The Interaction of Electromagnetic Waves With Some
Natural Surfaces, Antenna Laboratory, Ohio State University Report-898-2.

6. Bahar. E. (1981) Scattering cross sections for random rough surfaces: Full
wave analysis, Radio Sci. 16:33 1-341.

.......-... ........ "

-. . . . . . .. . .. . . . . . e



;F o_ o -

Particular emphasis has been placed on the characterization of the surface in

terms of the statistical distribution of the heights, their degree of correlation

(T is the surface correlation length), the variance of heights a2 , and a complex
7,8

dielectric constant representing a particular terrain type. These features are

then related to a normalized radar cross section for the terrain through an elec- '
9.10tromagnetic analysis. One of the most frequently applied approaches is that

of physical optics.

In this report, we will discuss several topics related to the use of a physical

optics scattering model. These are the limitations and constraints that are in-

herent in the application of such a model, the range of validity of the analyses,

how different representations of normalized cross section a* have to be introduced

for different parameter ranges, and the effects of these different representations

of the normalized cross section 9 on the calculation of the diffuse scattered power.

2. THE CONDITIONS FOR PHYSICAL OPTICS

Over the years, the arguments to support the validity of physical optics have

centered around the use of the Kirchhoff integral representation for the scattered

EM wave, where the boundary conditions on the surface have been satisfied

through the use of the Fresnel plane wave reflection coefficients. The boundary

conditions are met by specifying the total field on the rough surface as the sum of

an incident field and a scattered field. The scattered field is expressed as the

product of the incident field and the Fresnel plane wave reflection coefficient. The

use of the Fresnel plane wave reflection cotfficient is justified if the local radii of

curvature on the rough surface are large compared to a wavelength (Rc>> ?). We

wish to relate this constraint to more readily handled surface parameters.
11In Ulaby et al there are two conditions given for the validity of the Kirchhoff

2
approximation: kT> 6 and T la> 2.76 X, where k = 27r/ .• = EM wavelength,

7. Papa, R.J. , and Lennon, J.F. (1980) Electromagnetic scattering from rough
surfaces based on statistical characterization of the terrain, International
Radio Science S~posium, (URSI), Quebec, Canada. •

8. Papa, R. J., Lennon, J. F., and Taylor, R. L. (1980) Electromagnetic Wave
Scattering From Ro'gh Terrain, RADC-TR-80-300, AD A098939.

9. Papa, R. J., Lennon, J. F., and Taylor, R. L. (1982) Further Considerations
in Models of Rough Surface Scattering, RADC-TR-82-326, AD A130424.

10. Papa, R. J., Lennon, J. F., and Taylor, R. L. (1983) Multipath effects on an
azimuthal monopulse system, IEEE Trans. on Aerospace and Electronic ., -
ystems pp. 585-597.

11. Ulaby, F.T., Moore, R.K., and Fung, A.K. (1982) Microwave Remote
Sensing., Vol. II, Addison-Wesley.
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T = surface correlation length, and a = standard deviation in surface height. In

the present report. it will be shown that a single condition (T >> X) is sufficient

for the validity of physical optics. It will be shown that for a rough surface with

a Gaussian correlation function, T >> X implies that the radius of curvature Rc

must be large compared to a wavelength (R >> )). Thus, the second condition

given by Ulaby et al11 is redundant.

2.1 Magnetic Field Integral Equation

To clarify some of the implications in the use of physical optics concepts we
4follow the treatment of Brown who starts with the magnetic field integral equation

for the current J induced on a perfectly conducting rough surface by an incident

magnetic field rli. 5

2 +Lf X

where is the unit normal to the rough surface, S is described by z ° = y(xo .y o),
0 00

and g(Ii - Fo ) is proportional to the free space Green's function:
0

g(I" -rFo1 )  exp (ikI -Fr"I Fo) l o I "''i- '

0 o 0

where r" is the vector from the origin to a point on the rough surface:

= x + y + z6. Also, (x, y) is the surface height (a random variable),

and F 8=/ /x and Wa = /ay are the x and y components of the surface slope.
x 12

Brown has indicated steps that transform this expression into a new form

that can be analyzed to arrive at a sufficient condition for the validity of the physi-

cal optics model. The details of this expansion are presented in the appendix. As

a result of those operations we arrive at a new integral equation describing the

current:

1i ( Sn) ['ff]qG 31 . 2 . n)[ (k l' 21 - 2'2 ... - n""::':"
lira n

2 ir ( l k1 '2 .... (k 1~ 0 ' 1, ' , .... .n -- o

- F (01, k, 2k 2')do,.. d On

2H °  - i q  i c- k2 .... ) (2)z x - -l P k~ l ( ,- kiz, q2 . n(2

2x

12. Brown, G.S. (1983) Private communication.
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Here, H 0  amplitude of the incident magnetic field, cq, cq, and cq are polariza-
0X y z

tion factors,

n

if 1 ::> .

and p1 is the stochastic Fourier transform of the single point probability density -

function (pdf). The current is represented as

J q = jq exp iki. r I forq=x, y.

Herek k 2 ... kn and 1, 2'... n are stochastic Fourier transform variables.

Also, kit is the transverse part of the incident wave vector and rt lies in the

x-y plane. The details of these equations are presented in the appendix. The

particular term of interest in this expression is F2 (k 1 ,j3'P2 ,k 2 . kn)

r 2 ( 1,k1,32,k2 ,..,kn)

(,1 agW~~ V~ -i 03) a IZ l
a 6x ak2x a 5y ak2 y + 6t o.-

XP 2 (k1' O.300 oi k2 ... n)exp(ik.* 6Ft)drtd 0o

(3) ' "

Here, gand are the Fourier transforms of the Green's function and its deriva-

tive respectively and 2 " 
. . ) is the stochastic Fourier transform of the two point

pdf. The significance of F2 is that under the condition that this term vanishes

(F2 - 0) the integral equation then yields the physical optics result (for a perfect

conductor) for the current density:

Thus we can determine a sufficient set of conditions for physical optics in

this instance by determining a set of conditions that causes F2 - 0. The object

is to relate dimensions of the surface to the wavelength of the incident field and

in this context we will show that the condition T/X - oc is a sufficient condition for

F2 - 0 and hence for physical optics conditions to prevail.

Since F2 is such a complicated expression we simplify the analysis by exam-

ining the type of behavior expected for various elements of the F2 integrals. The _

first term that we wish to consider is P2 (" " )' the two point stochastic Fourier

transform. Brown 4 has given expressions for p2(ggo , 7gV o " .. gnvn) and

0

4
A. .

0 °
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p 2 (k, A. 2 k, ,n) and we will use these relations in assessing the

behavior of the multivariate distribution under the transform operation.

First, we define 7' = T/X = sI(6x) 2 + (6y) 2/X and T' = T/X. We restrict our

analysis to the case where the surface correlation function, R(I') is Gaussian

R(r1) = a2 exp [- (-') 2 /(T') 2 ]

In addition, the two point probability density

is Gaussian with zero-mean variates.

Next, we consider the quantity

(E go) = R(T') = a2 exp W- (7') 2 /(T') 2  
.

Also,

T~a' IR (T') X, Ix' ) 27' 1(,
ax a -' ] (T')2 3,r

In the limit whenT' - , - 0 andhence, t o. ) lim- 0.

Similarly, we have that ( v go)l, - 0. We continue this evaluation for higherT0 m

order derivatives. "

0a 2  > a - ) =(' 2R(') + 4(x' -x'1) 2 R(r')

ax ax, T 1 (T,) 2  (T) 2  (Tt)4

o2 2
This expression - 0 as T' -- o so that oV 2 i raim 0 and (9V 0 ~ o) li ra- 0. 2

T'-o T' o
In similar fashion we can show that the general cases are

( ,n lim 0. , n o ) lim- 0 and (Vmg7Vno) Jim_ 0 .

TV- cc- oo T'-oo

In Brown's formalism, the expression for p2 when
n wn'o""

P2~~~~~~~ Q, F 0 .F 7 ,7-

is Gaussian is

P2 (k1 - * - ' k2 ' - . ) exp - 22 V 2 )/2]

5
""S~ . i '
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where

k 1 -f Po

V22
-2

and ( C 2 stecvrinemti

C2 ~~~ KV~) V) .VC

(V 0o 0 0 ) )V 0 V .

This form of the covariance matrix obtained by Brown is a general one. For our

case with a Gaussian form for the correlation, we obtain the simpler form for the

matrix

92  R 0 0 0 ....

R 92 0 0 0 ....

- 0 0 0 0 0....
C2 0 0 0 0 0 . .. .

by substituting our previously derived terms for the derivatives as T' - c .4

6



such that the Rayleigh parameter, 2: 2 3. For smaller values, the Taylor series

representation for a* is accurate and should be used for calculating the bistatic

clutter power.

If the Rayleigh parameter dependence of the cross section is taken into ac-

count and surface shadow regions are included, then these results indicate that

phiysical optics principles can be applied to analyze electromagnetic scattering

from surfaces with an extensive range of roughness conditions.

20



and surface parameters are such that the Rayleigh parameter Z 2t 3. 0. For

smaller Rayleigh parameters. the Taylor series representation for a* is accurate

and should be used for calculations of clutter power.

SCONCLUSIONS

In this report four major topics have been studied. The findings for each are

summarized here. The first topic is the investigation of the conditions under

which a physical optics model of the scattering from a rough surface is a valid
representation. The investigation proceeded from an analysis of the magnetic -

field integral equation for the current density on the rough surface. For a surface
with a Gaussian surface height distribution and a Gaussian surface correlation

function we have demonstrated that only one sufficient condition is needed in order

that physical optics be valid for calculating EM wave scattering from the rough
surface. This condition is that the correlation length T be much greater than a
wavelength.

The second consideration of the report is to relate that constraint to the al-
ternative condition that the radius of curvature of the surface irregularities be

large compared to the wavelength. The analysis involved the same restrictions of

Gaussian surface heights and surface correlation function. For our condition
(T/A - c)it was shown that the consequence of these assumptions is that the sur-
face slopes and slope derivatives are statistically independent. The conclusion

that follows from these arguments is that T>> X is always a sufficient condition

for R >> A and for most cases it is also necessary.

In the third topic we have addressed the question of the form of the scattering

cross section that is present in the physical optics representation of the scattering.

In the report we have shown that, despite the constraint on surface correlation, the

surface can be described by a wide range of values of the Rayleigh roughness

parameter. Typically in radar engineering, the asymptotic form for the cross

section is used in scattering calculations. Here we have shown that different rep-

resentations for the normalized cross section a* must be used, depending on the

magnitude of the Rayleigh roughness parameter. Explicit representations for a'

have been given for small, intermediate, and large Rayleigh roughness parameter

when the surface is described by either a bivariate Gaussian distribution or a bi-

variate exponential distribution in height.

Finally, we examined the effect of using the different representations for a0

in determining the diffuse power scattered in the forward direction by a bistatic

radar system. The conclusion is that the conventional asymptotic form for a'
gives accurate results (±I dB) only when the system and surface parameters are

19



Table 3. Diffuse Scattered Power for Different aO Representations

Antenna 2 Strip 2Diffuse Scattering
Separation a Distance ~2Power

92 kmi 1 m 2 10 M 531. PDIFF = 7. 52. 1O -13 W
PDIFFI - 7. 57. 10-1 3W
PDIFFX = 2. 1. 10-113W

1 kmi 6.67 PDIFF =3. 88. 10-12 W
PDIFFI = 4. 16. 10-1 2 W
PDIFFX = 4. 16. 10 1 2 W

4 kmi 0.795 PDIFF a 1. 09. 10-12 W
PDIFFI z 6.75. 1O-13 W
PDIFFX =6.75.10-13 W

46 km 0.4 PDIFF = 7.28.10-1 5 W
PDIFFI = 4.41.1i-15W
PDIFFX = 4.41.1O-15 W

10 in 46 km 4.3 PDIFF =3.65.1Ol14 W
PDIFFI = 3. 52. 10-14 W
PDIFFX = 3.52. 10-1 4 W

0.5 m2  46 km 0.2 PDIFF = 5. 53. 1l-15W
PDIFFI = 2.27. 10-15W
PDIFFX = 2. 27. 10-15w

2
0. 1 M 46 km 0.04 PDIFF = 2.67. 10-16W

PDIFFI = 4.67. 10-16W
PDIFFX = 4.67. 10-16W JO

10 m 2  10 M 5308. PDIFF =6.75. 10-12W
PDIFI = .7510-12W

PDIFFX = 2.08. 1l-112 W

9 km lin M 10M 6663. PDIFF =3. 04. 10 -9 W
PDIFFI = 3. 04. 10-9W
PDIFFX = 2.08.10-1 3 W

1 km 328. PDIFF = 3.62. 10-l 3 w
PDIFFI = 3.63. 10-13W
PDIFFX = 2.08. 10-1 1 3 W

contribution for two strips have been evaluated, one close to the transmitter and

the second at a distance from it. These comparisons show the effect of Z 2 on the

three types of power calculations as a number of parameters are allowed to vary

w idely.

In calculations of radar clutter contributions from Gaussian surfaces, the

asymptotic form of a* is conventionally used. Examination of the results of this

table indicates that the asymptotic form (physical optics plus steepest descent

evaluation of integral) for a* will give accurate results I± dB) only if the system

18
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4. EFFECT OF 0 ° REPRESENTATION ON DIFFUSE SCATTERED POWER

In this section, actual quantitative comparisons will be made of the diffuse -

power reaching a receiver (see Figure 1), where the different representations for

a* have been used, as discussed in Section 3. Because the computation time was

prohibitive when the total diffuse power was calculated by integrating over the

entire glistening surface (especially for the integral representations for a*), we

consider only the diffuse power reaching the receiver from selected strips of 0

ground 20 m wide and parallel to the y-axis.

The effect of integrating across the surface can be seen in the results shown

in Table 3. For a = 1 m and an antenna separation of 92 km, we show the in-

dividual contributions from strips that represent a wide variation in position along

the distance axis. We are concerned with the effect of the Rayleigh parameter Z S
on the various representations. There are two main factors constituting that

parameter, c 2 and scattering angle. In the table, >-2 results are obtained, where

both of these factors are allowed to vary separately. The results presented here

are for a receiver height of 2500 m, transmitter height of 100 m, transmitted

power of 350 W and vertical polarization. The surface heights are taken to have a

Gaussian distribution and a surface correlation length T = 5 m. For all cases, we

show the three different diffuse power levels calculated using the three represen-

tations of a° : PDIFF corresponds to the asymptotic form; PDIFFI is the numerical

evaluation of the integral; and PDIFFX is the result for the power series repre-

sentation.

There are three basic comparisons in the table. First, for a separation of

02 km and 2 = 1 m2 the effect of Y2 is shown as the distance of the scattering

strip (scattering angle) is varied. Next, for the same separation (92 km) and a

fixed strip position (46 km from the transmitter) Z2 is changed by varying a2

(0. 1 m2, 2, 10 2). Finally, the table shows a comparison of results for

a= 10 m2 at two antenna separations (9 and 92 kin). At both separations the

PULSED RADAR BEACON DIRECT SIGNAL M P R

MONOPULSE RECEIVERDIFFUSE SEULR'. .

MULTI PATH ,?

ROUGH TERRAIN

Figure 1. Rough Surface Scattering for a Bistatic Geometry

17
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Table 2. J° Values Calculated Using Different
Representations

J° for Bivariate Gaussian

POWER EXP. ASYMPT. INTEGRAL

96 1.0E - 13 7753 7807

20 7323 7753 8018

10 8300 7753 8298

1 3850 7753 9931

J° for Bivariate Exponential

i:2 POWER EXP. ASYMPT. INTEGRAL

96 9881 9850

10 155779 9881 9985

1 7753 9881 3735

0. 1 91 9881 85

he r'sults of this table may be summarized as follows:

i ) Ivariatc (aussian Surface:

(a) For large Rayleigh parameters ( 2 > 20), both the asymptotic and

integral representations are accurate and agree to within a few percent.

(b) For intermediate and large Rayleigh parameters (Z2 - 10), the in-

t,.gral representation is accurate (for small "£ values the numerical integration

rniiv have oscillation problems).

(c) For small Rayleigh parameters (E2 10), only the power series

expansion representation is accurate.

(ii) Bivariate Exponential Surface:
2

(a) For large Rayleigh parameters (2 20), both the asymptotic and

integral representations are accurate and agree to within a few percent.

(b) For all values of the Rayleigh parameter, the integral representation

is accurate
2(c) For small values of the Rayleigh parameter (2 < I), the power

series expansion representation is accurate and agrees with the integral repre-

sentation to within a few percent.

16

%3

S

. .. . .°..



Brown has identified J as the incoherent power scattered diffusely, and

Js is the incoherent power scattered in the specular direction (vx = vy = 0). Thex

four-fold integral given in Eq. (9a) can be reduced to a single integral if T <<X,Y,

just as was true for the Gaussian case. The result is

+ >: - _ I v -/(2 f >. ,,)d-)3/]-" d
JD \ 2 ) Jo(vxy) [ 3l+- - "

0 (10)

For large and small values of >; , 7X so J0  For large Rayleigh para-
.2

meters (G > 20), a steepest descent evaluation of the integral in Eq. (10) yields

the asymptotic expression for JD:

2

\wherev =-(2" "

where vz  -(27r/))(cos 19 + cos 0s). For intermediate values of Z the integral S
has to be evaluated, and in general, Js 0 0 so J° = JD + Js. For small Rayleigh

parameters (Z 2 < 1), the following expression [from a Taylor expansion of the

integral in Eq. (10)] can be used:

4 2 
v2 2T22

J 2 T ex [ (12) -

3.3 Comparisons

To demonstrate quantitatively the accuracy of these various representations -

for J° as a function of the Rayleigh parameter squared ( 2), Table 2 was con-

structed. This table shows J° values as a function of L2 using the different rep-

resentations. Here, POWER EXP. refers to the Taylor series expansion repre-

sentations [Eqs. (8) and (12)], ASYMPT. refers to the asymptotic representations

[Eqs. (7) and (1)1, and INTEGRAL refers to the integral representations [Eqs.
2 2(6) and (10)!. In these tables, the variance in surface height a= 0 m 2 the cor-

relation length T = 15 m, and the azimuthal scattering angle s = 0. 5. It should

be noted that, since we are concerned with differences between solutions, the

values shown for the intermediate exponential solutions are actually values for JD

since Js would be nearly zero for all methods.

17. Brown, G.S. (1982) Scattering From a Class of Randomly Rough Surfaces,
Radio Science 17:1274-1280.
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Next. we consider the evaluation of this expression for different Z2 regimes. If

Z >> 1, a steepest descent evaluation of the integral in Eq. (6) reduces it to the

asymptotic expression familiar to radar engineers (Barton and Ward 6):

jo\/[4F~v 2 \ I 1  
''"

-- exp (7)x2 F,2 .-5.-

In the intermediate case, the integral has to be evaluated explicitly. When the
2

Rayleigh parameter is small (Z2 < 10), the following series representation can

be used

22 2 ___ 2m r 2 T 2]

\4 2  e E E exp L y (8)
m=l

3.2 Bivariate Exponential Solution

The preceding results are all for Gaussian distributed surface heights. For 5
the case where the surface heights are described by a bivariate exponential the

four-fold integral appearing in Eq. (5) may be written as follows:

j0 j + J (9)
0 5

where

x x y y
4 L7)( ) f dX fdX dY 1  fdY exp ivx 1 "2)+ivY(y1 -y 2 ).

A 4XY f2j
-x -x -y -y

[\2  - \2(r )]9a

and
'Y).2 2 y) (I+ .2) -3 2 + ,2,)-3 (b

Js= 4 )(X) sinc2 (v X) sinc2 (vyY)((l+-3-- -(1 +(V-- 3] (9b)

Since this is for an exponential distribution, the bivariate characteristic

function for uncorrelated variates used in Eq. (9a) and Eq. (9b) has the form

X 2 ( -CO 1 + (2/3) -L 21- 3/2

16. Barton, D. K., and Ward, H. R. (1969) Handbook of Radar Measurement,
Prentice-Hall, Inc. Englewood Cliffs, New Jersey.
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a* 12 . ..

= pq 2J
°

2 x x y y
dX x dY fdY 2 exp[ivx(Xl"X 2 )+ iVy(Y 1 -Y 2 )"

-x - -y -y

X[X 2 (Z.T) - X'i(E)xI( ) ]

Here, p are the matrix elements for linear polarization states (see Ruck et al
pq

the rough surface has an area 4XY, and

T = Surface Correlation Length

vx  = (2 r/X)[ sin e sin 0 cos 5 ]

V = -(2r/A) sinO s s in s

= univariate characteristic function of the surface height
distribution function,

×2 = bivariate characteristic function, 5
= Rayleigh roughness parameter,

= (2 7ra/X)(cos 0 + cos 0s )

The forms assumed by x1 and ×2 for Gaussian surface height distributions

and for exponential surface height distributions have been derived previously. 9

For Gaussian surfaces, ( (T o ) = exp (- 2) and 2 (.- -- co ) = - 100 X On the

other hand, for a surface described by a bivariate exponential distribution function,

x2 (7 - oo) I[ + (2/3) 2 ] -3/2 and x 2 (r -7co) Xl Xl. The only condition needed
to reduce the four-fold integral to a single integration is T <<X,Y. This criterion

does not depend on the Rayleigh parameter but there are differences in the result-

ing forms for the two surface distributions.

3.1 Gaussian Solutions

For the Gaussian case, we have:

-8 Jo(vxyT)[\2 - \\ldr , (6)

0

where S

Vxy +y

13 S_.
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henceinthatrangeT> X R> XandR >> X-T> X. Thus, T >> X is

both necessary and sufficient for R c > X when we have intermediate a/T values.

To summarize the above results, we can say that, under our assumptions of

independent slope and slope derivatives, for a Gaussian surface and Gaussian cor-

relation function, T >> X is always a sufficient condition for R c>> X, and for

intermediate and large slope conditions, T >> X is both necessary and sufficient

for a physical optics solution to apply.

2.3 Shadowing

There is a final aspect to the relationship between roughness and physical

optics. It is well known that as the average surface slope becomes large (a/T2: 1),

shadowing becomes more and more important. Then, the physical optics current

density 2x H ) does not truly hold everywhere on the surface. For large

slopes, the correct current is obtained by multiplying the a* resulting from physi-

cal optics by a shadowing function , which describes how much of the surface is

unlit, that is, where J - 0 in the shadow regions. At present, this shadowing

function has been derived rigorously only in the high frequency geometrical optics

limit (X- 0).145

3. NORMALIZED SCATTERING CROSS SECTION

Previous reports and papers discussed how a general expression for the

norm alizcd cross section a* may be derived from the Kirchhoff integral expres-

sion for the waves scattered from a rough surface. In the present report, a brief

outline will be given for the determination of ac for different regimes of the Ray-

leigh parameter. The actual evaluation of the four-fold integral depends upon the

surface height distribution function. The general expression is

14. Sancer, M. 1. (1969) Shadow-corrected electromagnetic scattering from a
randomly rough surface, IEEE Trans. Antennas Propag. AP-17:577-585. f

15. Brown, G.S. (1980) Shadowing by Non-Gaussian random surfaces, Proceed-
ings of the Second Workshop on Terrain and Sea Scatter George Washing-
ton University, Washington, D. C.
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Thus, T>> X is both necessary and sufficient for R >> X when afT>> 1.

In the intermediate range of X the limiting case forms do not apply and the

function U(1/2, 0. X) must be evaluated explicitly. The procedures for evaluation

are outlined in Abramowitz. 13 To see how R varies in the intermediate X range

we consider several cases as 10.0 - X 2t 0. 1. Over this range, 1.5 a (a/T) _ 0.16

and the evaluation of U(1/2, 0, X) leads to the result that 0. 5T S R _ 2. 5T. In-

the earlier report we evaluated R c under the assumption that

K + z'2)3/2 2 3 / 2  0 + (z'2) 3 / 2 "
11,2 1/2 112 :

(z . • .

If we compare results of that early approach to those of the present case for inter-

mediate slope conditions we see that for-a/T < 1 the results are in reasonable

agreement while they diverge for a/T > 1. These results are summarized in

Table 1.

Table 1. Results for Rc in the Intermediate Range of a/T Values

X a/T ({K{) Rc Previous Rc

10 0.16 0.4/T 2.5T 1.9T

3 0.3 0. 5/T 2.1T 1.2T

1.6 0.4 0.7/T 1.5T 1. IT .

1 0.5 0.9/T 1.LT 1. iT-"

0.5 0.7 1. 1/T 0.9T 1.1ST

0.4 0.8 1.3/T 0.8T 1.24T
0.1 1. 5 1.9/T 0.5T 2.7T

It should be noted that in a strict sense the regions of X and a/T are not

equivalent. For instance a/T 10 X 0. 0025, which is well into the small X

approximation and similarly a/T = 0. 1 -. X = 25, which is in the large X solution

region. Equivalently, for 0. 1 5 X S 10 we have I. 5 -- a/T -- 0. 16. Thus, for

completeness we should examine the small X solution for 1. 5 5 a/T 5 10 to com-

plete the examination of how R c behaves for intermediate a/T. For that range 6

R = 0.6T. Similarly, for 0. 16 2t a/T - 0.1 we have 2.3 T 5 R :5 3.6T. Thusc c
over the entire range of intermediate a/T values Rc is of the same order as T and

13. Abramowitz, M., and Stegun, I.A. (Ed.) (1964) Handbook of Mathematical
Functions With Formulas. Graphs and Mathematical Tables, NBS Applied . "
Mathematics Series No. 55.
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After some manipulation we obtain

(AKI) = (JJ!) '-U -

, ( -(z"2)/(z, 2 ) o.U(L.z, >- ) 2 )

1. (K8) U(.. 0, 0.5 (z,2) -)
T 2

where U(a, b, X) is the confluent hypergeometric function of the second kind with

X 0.5 (z 12 )

We now want to examine the relationships for various slope regimes. Recall
that (z' ) = 2a /T2 and (z ' ) = 12a /T4 . Then, for small slopes (a/T << 1) we

have (2 (z' 2 -1.0o and

I l) 2(- (z" 2.76a .

for zeroth order and

( IK I) 2. 6 1 3. --";
T LT)J-

for first order.
Thus, we have a zeroth order solution for R c.("

T 2 "'

Rc 2.76a

which is equivalent to the result obtained in Ulaby et al 1 for small slopes. Then,
since a/T << 1 we have R > 0. 36T and T>> ? (a sufficient condition).

For large slope conditions (a/T >> 1),( 2) -. 0 and

112 z 2) + 0 [ 1 In 1

I
so

Rc 0.6T

10
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Since they are considering only small slopes, the curvature is considered to be a

function of just the slope derivatives. For our applications, though, we are con-
cerned with behavior for all surface slope magnitudes and therefore we cannot use
their simplified expression for the curvature. As a result, the analysis is more

complicated.
If we make use of the previously cited theorem, we can express the proba-

bility density function for the surface slopes as:

P(Z') f( - <z)I/2) exp - 2, . ' .

and for the slope derivatives

V= (2r(z 1) 172) exp [ (z'2

In the previous section we showed that, if the surface correlation length T' - ,
then the slopes and slope derivatives are statistically independent with (z'z") - 0. 0
Hence, under our assumptions we can write the joint probability density p (z', z")

as

2pzz,2 \ 1/2 <z1,2) /2 exp 2(z '2 + z ' '2) ] .

Next, we rewrite the curvature magnitude as

IKI2 Iz"[1 +zt2-3/21 = Iz"I I[l+zt2 -3/2

Then for the expected value we have

&KI\ I Iz"j Il + Z'2 ] 3 2 p(z', z"dz' dz"

-00 -00

Integrating over z" results in

IIKI= 2 2~ 2 \? 1+ '2 i 3/2exp [-z' /(2(zl2 ) dz'

0

9
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R is the average radius of curvature. This is the most generally used form for

the autocorrelation since use of an exponential form leads to discontinuities at

small distances.
9

In a "revious report by Papa, Lennon, and Taylor, a derivation was given

for the mathematical representation of the average radius of curvature Rc . The

rough surface is described by the equation z = (x, y). The average slope is given

by

where ( ) denotes expectation value. The average radius of curvature Rc of a

curve is given by

22

= _ _7 1
where K is the curvature. The average of (z') 2 is given by

S 2 2
(Wa 2"

Also, the average of (z") 2 is given by

42
'(z"11)2\ a R(T'=O) = 12a

T 4 T4 .-:
aT T

The results are consistent with the theorem from random processes that states

that the distribution of the derivative of a normal process with zero mean and

variance 2 is again normal and the variance of the derivative is P

2 2,,us = -(I p (0).
S

This theorem will be used by us to examine the relationship between the radius of

curvature and the correlation length in physical optics models.

Ulaby et al 1 examined this relation for the case where the slopes are re-

stricted to the condition that (z') 2 << 1. They obtain the result that

T2

R T
c 2.760

8
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Using this simplified matrix, we obtain the result that in the limit as T' - o

P(k1- 00, Ol - 0 0 . k 2 , - 0..

- exp - {(k- o 2 +2( o - (k -0 1)- + (go p) 2 }J

These results now allow us to examine the individual terms of F 2 in Eq. (3).

Since P2 is independent of k2 in the limit as T' - oo the terms

(g(~i 00)8 (a ___F' .
a~x 2 and ~ t~ 8

2  vanish. To examine the final
a x x y k 2 '

term, we reformulate the integration as

0-ffff ig I 2
-00

kix~x+k.6

and make an asymptotic evaluation of the 6x and 6y integrations, using the

stationary phase method with k' = koT - o. This leaves a double integration in

g and 0 0. The 130 terms in the integrand that results from the asymptotic evalu-

ation are a standard form so that the entire process then reduces to a single 4
integral in the complex -plane. Careful analysis of the appropriate contour

integration shows that the integral reduces to zero. The final result of this

analysis is that for T/AL - o, F -" 0. This implies that Eq. (2) reduces to

2 Jq )1 (k - 1)d3, -2 cq k -(ki) (4)

with q = x or y. The solution of Eq. (4) is given by the result

j (z) = 2H c exp (ik1 z { , which is the physical optics current. Thus, T/X -co
implies that the current density on a rough surface is given by the physical optics

result [J = 2n X H] (for a perfectly conducting surface).

2.2 Relation Between Re and T/)

We have derived the physical optics current from the magnetic field integral

equation using T/A -. . We next show the relation between this condition and the

basic condition for physical optics, namely that R >> k. We will show that for a

rough surface with an autocorrelation function R a2 e- 2 /T 2, where
2 ~ 2 2N[(x x2 ) (Y1  y2 )2/2, the condition T>> X implies R c > A where

7

R.

[?,.-?i--::--:~~~~ ~~~.-..-...."-:-....:...-.,-..........fi... .,... . ., - ..:.... ..-..... :.... %.,.,....- :



References

1. Beckman, P., and Spizzichino, A. (1963) The Scattering of Electromagnetic
Waves From Rough Surfaces, Macmillan Co. , New York.

2. Ruck, G.T., Barrick, D.E., Stuart, W.D. , and Krichbaum, C.K. (1970)
Radar Cross Section Handbook, Vol. 2, Plenum Press, New York.

3. Long, N. W. (1975) Radar Reflectivity of Land and Sea, Lexington Books,
Lexington, Mass.

4. Brown, G. S. (1982) A stochastic Fourier transform approach to scattering
from perfectly conducting randomly rough surfaces, IEEE Trans. Anten-
nas Propag. AP-30 (No. 6):1135-1144.

5. Peake, W.H. (1959) The Interaction of Electromagnetic Waves With Some
Natural Surfaces, Antenna Laboratory, Ohio State University Report-898-2.

6. Bahar, E. (1981) Scattering cross sections for random rough surfaces:
Full wave analysis, Radio Sci. 16:331-341.

7. Papa, R. J. , and Lennon, J. F. (1980) Electromagnetic scattering from rough
surfaces based on statistical characterization of the terrain, International
Radio Science Symposium, (URSI), Quebec, Canada.

8. Papa, R. J., Lennon, J. F., and Taylor, R. L. (1980) Electromanetic Wave
Scattering From Rough Terrain, RADC-TR-80-300, ADA098939.

9. Papa, R.J., Lennon, J.F., and Taylor, R.L. (1982) Further Considerations
in Models of Rough Surface Scattering, BADC-TR-82-326, AD A130424.

10. Papa, R.J., Lennon, J.F., and Taylor, R. L. (1983) Multipath effects on an
azimuthal monopulse system, IEEE Trans. on Aerospace and Electronic
Systems, pp. 585-597.

11. Ulaby, F.T., Moore, R.K., and Fung, A.K. (1982) Microwave Remote
SSensing, Vol. II, Addison-Wesley.

12. Brown, G.S. (1983) Private communication.

21

| • .

. a . . ... . .a



13. Abramowitz, M. , and Stegun, I. A. (Ed.) (1964) Handbook of Mathematical
Functions With Formulas, Graphs and Mathematical Tables, NBS Applied
Mathematics Series No. 55.

14. Sancer, M. I. (1969) Shadow-corrected electromagnetic scattering from a
randomly rough surface, IEEE Trans. Antennas Propag. AP-17:577-585.

15. Brown, G.S. (1980) Shadowing by Non-Gaussian random surfaces, Proceed-
ings of the Second Workshop on Terrain and Sea Scatter, George Washing-
ton University, Washington, D. C.

16. Barton, D. K., and Ward, H. R. (1969) Handbook of Radar Measurement,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

17. Brown, G.S. (1982) Scattering From a Class of Randomly Rough Surfaces,
Radio Science 17:1274-1280.

2

S

22 D

" . ** .°." "



Appendix A

An Analysis of the Magnetic Field Integral Equation

Al
Brown has outlined how a general expression of the magnetic field integral

equation for the current Jsinduced on a perfectly conducting rough surface by an

incident magnetic field Hi can be expanded into a form that will allow us to analyze

conditions sufficient for a physical optics model to be applied to the scattering

from a rough surface. The details of the analysis are presented here.

The current is given by:

Js(r~ 2n X + f )r X [Ss x vg(I- ) dS. A12 50 0(Al
5 0

where i s the unit normal to rough surface S described by z0 =o %(x 01 YO and.
00

g( 1) is proportional to the free space Green's function:
0

x .y L x yJ

00 0

Al. Brown, G. S. (1982) A stochastic Fourier transform approach to scattering
from perfectly conducting randomly rough surfaces, IEEE Trans. Anten-
nas Propag. AP-30 (No. 0e:1135-1144.
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where r0 is the vector from the origin to a point on the rough surface:

o= x y+ Zoz and io x.it +Yo U'

Also. (x, y) = z(x y) is the surface height (a random variable) and tx at

and y = -_ are the x and y components of the surface slope.

To examine the terms in the magnetic field integral equation [Eq. (Al)]. the

double cross product is expanded, the surface integration is converted to an inte-

gration over the z= 0 plane through dSr= I + F2 + 2o drto and both sides of

the equation are multiplied by %1 1 + g2 + C to give

J() • 2ix i)+ (2,)-If{[(qW) . i6g ] n-(o)

- N(r). J(ro)]Vo g) drt (2)

where

0 g2 +2 ) (it)-
x y 8

Jr -- + g2 + g2
x y

and p

dr'to dx dy
to 0

The current must always be tangential to the surface, so that

0 0

and therefore,

Wz = Wxdx )+tyJYWO (A3)'-
z 0 X0 X 0 YO Y 0

If Eq. (A3) is substituted into Eq. (A2), the result will give two coupled inte-

gral equations for J (r) and J y(r). The equations will become uncoupled if the

term [N • Vo in Eq. (A2) is ignored. This is equivalent to neglecting

cross polarization contributions to the current. These effects could be included

in the analysis but it becomes extremely cumbersome. S
In general, the electric field in the far field may be expressed in terms of the

current density as follows:

24
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E i- g(R )k xk xfrexp (ik rdrt(M
s ' 4 w' O t(4

where

r xu + yu + li
k = k xux +k SYu y+ k s

dit = dx d

r = impedance

and R 0is the distance from the z =0 plane to the observation point.

The statistical moments of the scattered field (E.) and E 1) 2 can be deter-

mined from Eqs. (A2), WA), and (AM), where ()denotes an ensemble average. It

is possible to obtain an equation for the current YJ in the Stochastic Fourier Trans-

form domain by multiplying Eq. (A2) on both sides of the equation by the Fourier

kernel

expI-ik1  i n,
n1l

and then averaging over all stochastic variables using the joint probability density -

function relating all the h-ights, slopes, and slope derivatives. Performing these

operations on the left-hiand side of Eq. (A2) yields the result:

(3 q(F)exp[- ik1  n+1~.Vr 1
n= 1

-SnS
= im (2,r n..0W %~.I2

x P I(k 1 - 3 1 , k 2 02. . . . k n )ndo, do32 ... don

where

n

S-

rt =xu x+ y

25



Jqis the Stochastic Fourier transform of J (rt), q = x or y and PI(...) is the

Stochastic Fourier transform of the joint probability density function (p d f). At

this point we have introduced the uncoupled current terms.

If the incident magnetic field of the surface is assumed to have the form

__(r ex i . it + ik i

then the term 2q . [N X I-ll on the right-hand side of Eq. (A2) may be written

2q. tN(r)) H(r) = 2Hoc Cxx + cyy] exp(+iki t r t+ikizg)

The polarization factors are determined by the direction n H of the incident mag-

netic field:

zz

xx -

c - -q'. (6 x

The Stochastic Fourier transform of this term may be written:

(2 " NX i. )  exp [ ik l i E q n~ " n  1 •

n11n= I l

-. - q .qa .q
2H exp(+ikit . r) c ic -ic y F 1 (kI-k izKk 3 ... )

zC k2x y
(A 6)

where

2 2 x2x 2y 2y

As before, neglecting the coupled term [N •(r)V g on the right-hand side
09

of Eq. (A2), the Stochastic Fourier Transform of the integral in Eq. (A2) may be

written:

D

2-
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+ g + (, " )exp ik .- i E ' k "e n f  -n

ayo  0 i-'-fj Hx~0  y ~0 ]qil 10

00 0

where P 2 is the two point pdf of the variates. The -integration can be written as

a convolution of the F-Fourier transforms of the Green's function derivatives and

P2(...).

By using the relations

g(Art, 3o0 f g (Ar t , 0 exp ( + i00 0

and

9 rt o exp (i 0 ) dF

and making the substitution Art = I - , Eq. (A7) may be written

0

4{ 0 0, + o],,< 0 o1~o...

exp - ik1E - i o( o - - i E kn+" 1 n[ dr'to
Ln=1 Jo:-:

= ag! [t'x ox ag(Art43¢) g" (Art, 3O ) ]Jqli~to, g o, (oro ....0) 00
U0 0

)<exp[-i~o~o -i EI k*n~l" vn j(ki-¢o 40 V4 ' .. )dtd~od~o... --

nn=1

(A 8) .. .
where P 2 is the Fourier transform of P 2 (...) with respect to .

The integration over o may be expressed as a convolution with a shifted argu-...

ment due to the exponential factor in Eq. (A). The o ,  .... integrations
may be written as convolution with no shift in the argument, and the integrations ...
over e. .. may be written as simple Fourier transforms. with repect t

If these transforms are performed, Eq. (A8) becomes

27
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II

=llm( 2 1
2 'Sff. f [_ i x I aTq oTq f[ 0 Ao

X 3qto0X%( o 0-a1 2 2. .;itdito~ ... d

where 
(A9)

,1(;Fto' 0' r ' .. f " f aq 0 oo ..... n,,o "

Xexp [-ig3o-i n+l" 07 o do dv00 .. dvo 0
00 0 0 00

and P2 is a double Fourier Transform with respect to both g and o
2 0

S2 (k -3 0 , 00 - 01 k 2 ' -2 &2'"' d =ffp2 (gA 0 v' go' 0 Vg . ;A)

00 n
x exp [i(k, - 0 )9-_fr0 - ) i~ n+l v

00

+ i"?'i --"

ViX n+ " 2o ]d9 dgo dV do o..7
Sn+ 1 00 090..

n--

The Stochastic Fourier Transform of Eq. (A2) may now be determined by
equating Eq. (A5) to the sum of Eqs. (A6) and (A9). With this and the substitution
Ar't rt- rto, the following result may be obtained:

lim 1 f1f - 4n)P(k1-_1-3.2_, ,kn- &)do Id 2" d n
n-oo (250f)Sn q.... n

2H -( "qqaq(0t z x ak-2x iy ak2y 1 •z 3.

lin (2fr)-2nf .. i f - ,j/it. o , ',(Ar', o) -.

28
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The first term of the right-hand side of Eq (Al10) has a factor exp(+iSit.t)

This implies that the current may be written in the form

Jq~r. ~l ~2'~ = q 2' exp (+iki

When this is substituted into Eq. (AlO), the following equation for 3q may be ob-

tained-

-r(03 1, k1, 0 k2 . do ) d01 s 2 ... d n

-2H [,q_ icq -:; -CLWPki q (k k )

Here, the quantity r 2 is given by

r 2(all k V 02. k 2 . -n)

(2 0)2 1fa

x P kI- os -01 2, ex i - Ait d~ to t +o

This form of the integral equation describing the current is one that is amenable -

to further analysis of its component terms. The term -by-term analysis leads to

determination of conditions for physical optics solutions.
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